ハイブリッド耐震補強工法を適用した既存低強度コンクリート RC 建物の耐震性能

耐震改修	あと施工アンカー	エポキシ樹脂
間接接合部	補強骨組	

1. はじめに

既存 RC 建物を枠付き鉄骨ブレースを用いて補強する 場合,既存躯体と鉄骨枠組との接合部には、あと施工ア ンカーを用いて接合する工法が多く用いられている。こ の補強方法および接合工法は、これまで多くの施工実績 があり、日本建築防災協会の「既存鉄筋コンクリート造 建築物の耐震改修設計指針同解説¹⁾(以下,耐震改修設 計指針と称す)」に設計法が示されている。しかしなが ら,耐震改修設計指針は、コンクリート圧縮強度 σ_b が 13.5N/mm²以上の建物を適用範囲としているため、 σ_b が 13.5N/mm²を下回る RC 建物に対して、期待する補強の 効果が得られるか十分に検討されていなかったため、近 年,著者らは低強度コンクリートを有する RC 建物に対 して、枠付き鉄骨ブレース補強した場合の強度とじん性 について実験的な研究を行なった²⁾。

本研究では、既存 RC 建物の枠付き鉄骨ブレース補強 における接合方法として、あと施工アンカー工法とエポ キシ樹脂による接着工法を併用して用いるハイブリッド 耐震補強工法³⁾に着目し、のが 13.5N/mm²を下回る低強

正会員	〇石村光由*'	同	貞末利	印史*2
同	藤井稔己*3	同	横山	岡J¥ ⁴
同	南 宏一* ⁵			

度コンクリートを有する既存 RC 建物に対して,ハイブ リッド耐震補強工法を適用することの妥当性について検 討するために,接合部要素実験と枠付き鉄骨ブレース補 強した骨組の実験を行った。ハイブリッド耐震補強工法 枠付き鉄骨ブレースの設計・施工指針³⁾(以下,ハイブ リッド指針と称す)では,既存躯体ののが 15N/mm²以 上であることが適用範囲とされている。

2. 接合部要素実験

2.1 試験体

ハイブリッド耐震補強工法における既存躯体と鉄骨 枠組との接合部のせん断強度について検討するために, 接合部の要素実験を行った。試験体計画を表-1,試験 体形状を図-1 に示す。試験体は,既存躯体部のコンク リート設計基準強度 Fc=9N/mm²を共通因子,アンカー 筋のピッチ 3 種類(200mm, 300mm, 600mm)を実験 変数として,同一試験体を各 3 体ずつ,合計 9 体とした。 なお,アンカー筋には D13(SD345)の異形鉄筋を用い ている。試験体に使用した鋼材およびコンクリートの材 料試験結果を表-2,表-3 にそれぞれ示す。

表-1 試験体計画

Seismic Performance in Existing RC Structure with Low-Strength Concrete where Hybrid Seismic Strengthening Method was applied

表-2	コンク	リー	トの材料強度
-----	-----	----	--------

既存部		間接掛	妾合部	エポキシ樹脂		
圧縮	引張 圧縮		引張	圧縮 引張		
(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	
8.15	1.02	54.6	4.79	91.1	56.9	

表-3 鋼材の材料強度

使用答訴		降伏強度	引張強度	伸び
使用固所		(N/mm^2)	(N/mm^2)	(%)
D13 (SD345)	アンカー筋	341	501	17.0
D6 (SD295)	割裂防止筋	325	553	12.5
13φ	スタッド	332	481	36.7
13φ	既存部	345	422	30.1
60	既存部	359	525	144

2.2 載荷方法

載荷は図-2 に示す載荷装置を用いて,正負繰り返しの漸増載荷を行った。変位の計測は,鉄骨枠組部に変位 計測用のボルトを溶接し,既存躯体部にはボルトをコン クリート内に埋め込んで,既存躯体部分に対する鉄骨枠 組部分の相対ずれ変位δを測定して変位制御を行なった。

2.3 荷重-変形関係

 $Q-\delta$ 関係の履歴曲線の一例を図-3に示す。全体的に 見ると、アンカー筋間隔が小さい試験体の方が小さな変 位で最大強度に達する傾向が見られるが、全試験体とも、 概ね $\delta=\pm0.5\sim1.0$ mmの振幅で最大耐力に達し、その後 の振幅では、急激に強度低下を生じることが確認された。 また、同一形状の試験体においても最大強度にバラツキ が見られたが、アンカー筋間隔が小さくなるほど最大強 度は大きくなることが確認された。同一形状の試験体に おいて、最大強度にバラツキが生じた要因に関しては、 エポキシ樹脂と既存躯体部の接着面において、既存躯体 部のコンクリートの剥離面積の大きさが異なっているこ とが影響しているものと推察される。

2.4 接合部のせん断強度

ハイブリッド耐震補強工法における接合部のせん断 強度は、アンカー併用接着接合部と間接接合部のいずれ かせん断強度が小さい部分の破壊によって、せん断強度 が決定される。アンカー併用接着接合部のせん断強度 *bQju*と間接接合部のせん断強度 *sQju*の評価に関しては、 ハイブリッド指針³⁾に下式が示されている。本実験で用 いた試験体は、*bQju*<*sQju*となる設計が行われている。

$$bQ_{ju} = 0.08 \cdot \sigma_B \cdot A_b + \tau_{ay} \cdot \Sigma a_a \tag{1}$$

- $\tau_{ay} = \min (\tau_{ay1}, \tau_{ay2}) \tag{2}$
- $\tau_{ayl} = 0.5 \cdot \sigma_{ay} \tag{3}$

$$\tau_{ay2} = 0.3 \sqrt{\sigma_B \cdot E_{cl}} \tag{4}$$

ここに、 σ_{B} は既存コンクリート圧縮強度、 A_{b} は接着接 合部の面積、 Σa_{a} はアンカー筋の断面積、 σ_{ay} はアンカ ー筋降伏強度、 E_{cl} はコンクリートヤング係数である。

せん断強度の実験値と計算値の比較を図-4 に示す。 全ての試験体において、本実験で得られたせん断強度の 最大値は、ハイブリッド指針に示されるせん断強度の評 価式による計算値を大きく上回っており、既往の評価式 を用いて安全側に評価できることが確認された。

3. 骨組実験

3.1 試験体

試験体形状を図-5 に示す。試験体は実大建物に対し て 1/1.75 程度の寸法を有しており,柱 350mm×350mm, 梁 250mm×350mm の 1 層 1 スパンのラーメン架構をハ イブリッド耐震補強工法によって補強したものである。 柱と梁のコンクリートは,接合部要素実験と同様に, Fc=9N/mm² で調合設計を行った。試験体に用いた素材 の材料試験結果を表-4,表-5 に示す。

		既存部		間接接合部		エポキシ樹脂	
	実験期	圧縮	引張	圧縮	引張	圧縮	引張
		(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)
	初期載荷	8.38	0.99				
	補修後 再載荷	9.97		54.8	4.02	99.8	64.6

表-5 鋼材の材料強度

住田竺正		降伏強度	引張強度	伸び
使用	固別	(N/mm^2)	(N/mm^2)	(%)
D13 (SD345)	アンカー筋	366	552	0.69
D6 (SD295)	割裂防止筋	321	512	0.63
13φ	スタッド	364	487	0.75
13φ		325	436	0.74
16φ	既存部	325	436	0.74
6φ		291	492	0.59
PL-6	ブレーフ	293	451	0.65
PL-4.5		343	421	0.81

3.2 載荷装置

載荷装置を図-6 に示す。本実験で用いた試験体は, 1 層 1 スパンの基礎固定骨組であり,直交梁や境界梁は なく,2 層の反曲点として想定した位置に,一定圧縮軸 力下(600kN)で正負繰返しの漸増水平載荷を行った。 載荷は、層間水平変位 δ_u を層間高さ L で割った層間 変形角 R を変位制御して、 $R=\pm0.8$ %rad.までは ±0.2 %rad. の漸増を 2 サイクルずつ繰返し、それ以降は ±0.4 %rad. の漸増を 2 サイクルずつ繰返す載荷プログラムとした。

3.3 破壊性状と履歴特性(初期載荷)

最終破壊状況を写真-1 に示す。初期載荷実験では, 変位振幅を増大するにつれて,鉄骨枠組下側位置のアン カー併用接着接合部が破壊を生じてずれを生じると共に 両側柱の柱脚側において,柱梁接合部がパンチングシア 破壊して耐力低下を生じてきたため, *R*=±1.6 %rad.の 振幅で実験を終了した。なお,鉄骨ブレースは座屈や破 断を生じていないことが確認された。

水平力 Q-層間変形角 R 関係の履歴曲線を図-7 に 示す。図-7 には既往の研究²⁾で報告した本実験と同形 状の無補強 RC 骨組の実験値を示した。補強骨組の最大

写真-1 最終破壞状況(初期載荷)

耐力は無補強骨組の最大耐力を大きく上回っているが, 柱脚側柱梁接合部のパンチングシア破壊の影響を受け, 最大耐力以降の耐力低下が著しいことがわかる。

3.4 破壊性状と履歴特性(補修後再載荷)

初期載荷実験では、柱脚側柱梁接合部がパンチングシ ア破壊を生じて、鉄骨ブレースによる補強の効果を最大 限に発揮できなかったものと思われる。そこで、既存躯 体と鉄骨枠組の接合部および既存躯体に生じているひび 割れ部分にエポキシ樹脂を再充填すると共に柱脚側柱梁 接合部を鉄筋コンクリートで根巻き補強して、柱脚側柱 梁接合部のパンチングシア強度に余裕を持たせ、初期載 荷実験と同様の実験を行った。最終破壊状況を写真-2, *Q*-*R* 関係の履歴曲線を図-8 に示す。

補修後再載荷実験は,初期載荷実験と破壊状況が大き く異なり,柱脚側柱梁接合部でパンチングシア破壊を生 じることはなく,鉄骨ブレースが座屈を生じることによ って,引張側ブレースと圧縮側ブレースの交点近郊にお いて,鉄骨枠組と既存躯体の接合部が大きく剥離した。 初期載荷実験と補修後再載荷実験の履歴曲線を比較する と,補修後再載荷実験の最大耐力は初期載荷実験の最大 耐力を上回っており,補修による効果が確認された。

写真-2 最終破壊状況(補修後再載荷)

図-8 水平力-層間変形角関係(補修後再載荷)

3.5 補強骨組の終局耐力の評価

ハイブリッド耐震補強工法を適用した補強骨組の終局 耐力に関してはハイブリッド指針³⁾に評価式が示されて

*1 福山大学大学院博士課程

- *2 広島工業大学 准教授・博士(工学)
- *3 福山大学大学院修士課程
- *⁴ (株)コンステック
- *5 福山大学 教授・工博

いる。ハイブリッド指針では、鉄骨ブレースが降伏して 終局耐力に達する場合あるいは既存躯体と鉄骨枠組との 接合部が破壊して柱がパンチングシア破壊する場合およ びその他 3 種類の計 5 種類の破壊モードを想定して、終 局耐力を評価している。実験値 Q_{max} と終局耐力の計算値 Q_{cal} を表-6 に示す。いずれの実験においても、実験値は 計算値を上回ることが確認された。

表-6 終局耐力の実験値と計算値

試驗体	実験値Q max (kN)		計算值	$ Q_{max} /Q_{cal}$	
1 VOX IT.	正	負	Q_{cal} (kN)	正	負
初期載荷	931	-936	732	1.27	1.28
補修後再載荷	1013	-1043	835	1.21	1.25

3.6 じん性の評価

初期載荷,再載荷および既往の研究²⁾で報告した無補 強 RC 骨組の包絡線を図-9 に示す。初期載荷,再載荷そ れぞれの実験について,耐力低下が生じない範囲で F 値 を定めると,初期載荷で F 値 1.2,再載荷で F 値 2.0 を確 保できることが確認された。

4. まとめ

σ₈が 13.5N/mm²を下回る RC 建物に対しても, 接合部 のせん断強度と補強骨組の終局耐力は既往の評価式によ って安全側に評価できることを確認し, 柱および柱梁接 合部のパンチングシア破壊を生じない補強骨組は, F 値 2.0 のじん性を確保できることを明らかにした。

参考文献

- 1) 日本建築防災協会:既存鉄筋コンクリート造建築物の 耐震改修設計指針同解説,2001.1
- 2) 石村光由,貞末和史,藤井稔己,宮内靖昌,南宏一: 鉄骨ブレース補強した低強度コンクリート学校校舎の 耐震強度に関する実験的研究,日本建築学会構造系論 文集,第644号,pp1813-1820,2009.10
- 3)耐震補強システム工事グループ:ハイブリッド耐震補 強工法枠付き鉄骨ブレースの設計・施工指針,2001.7

*1 Graduate School, Fukuyama Univ.

- *2 Assoc. Prof., Hiroshima Institute of Technology, Dr. Eng.
- *³ Graduate School, Fukuyama Univ.
- *4 Constee Engineering Co., LTD
- *5 Prof., Fukuyama Univ., Dr. Eng.